Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 14 entries in the Bibliography.


Showing entries from 1 through 14


2021

Investigating the link between outer radiation belt losses and energetic electron escape at the magnetopause: A case study using multi-mission observations and simulations

Abstract Radiation belt flux dropout events are sudden and often significant reductions in high-energy electrons from Earth’s outer radiation belts. These losses are theorized to be due to interactions with the dayside magnetopause and possibly connected to observations of escaping magnetospheric particles. This study focuses on radiation belt losses during a moderate-strength, nonstorm dropout event on 21 November 2016. The potential loss mechanisms and the linkage to dayside escape are investigated using combined energetic electron observations throughout the dayside magnetosphere from the MMS and Van Allen Probes spacecraft along with global magnetohydronamic and test particle simulations. In particular, this nonstorm-time event simplifies the magnetospheric conditions and removes ambiguity in the interpretation of results, allowing focus on subequent losses from enhanced outward radial transport that can occur after initial compression and relaxation of the magnetopause boundary. The evolution of measured phase space density profiles suggest a total loss of approximately 60\% of the initial radiation belt content during the event. Together the in-situ observations and high-resolution simulations help to characterize the loss by bounding the following parameters: 1) the duration of the loss, 2) the relative distribution of losses and surface area of the magnetopause over which loss occurs, and 3) the escaping flux (i.e., loss) rate across the magnetopause. In particular, this study is able to estimate the surface area of loss to less than 2.9×106 RE2 and the duration of loss to greater than six hours, while also demonstrating the MLT-dependence of the escaping flux and energy spectrum .

Cohen, I.; Turner, D.; Michael, A.; Sorathia, K.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029261

Radiation belt; Magnetospheric escape; energetic electrons; Flux dropout events; test particle simulations; Van Allen Probes

Harmonization of RBSP and Arase energetic electron measurements utilizing ESA radiation monitor data

Abstract Accurate measurements of trapped energetic electron fluxes are of major importance for the studies of the complex nature of radiation belts and the characterization of space radiation environment. The harmonization of measurements between different instruments increase the accuracy of scientific studies and the reliability of data-driven models that treat the specification of space radiation environment. An inter-calibration analysis of the energetic electron flux measurements of the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron-Proton Telescope (REPT) instruments on-board the Van Allen Probes (VAP) Mission versus the measurements of the Extremely High Energy Electron Experiment (XEP) unit on-board Arase satellite is presented. The performed analysis demonstrates a remarkable agreement between the majority of MagEIS and XEP measurements and suggests the re-scaling of MagEIS HIGH unit and of REPT measurements for the treatment of flux spectra discontinuities. The proposed adjustments were validated successfully using measurements from ESA Environmental Monitoring Unit (EMU) on-board GSAT0207 and the Standard Radiation Monitor (SREM) on-board INTEGRAL. The derived results lead to the harmonization of science-class experiments on-board VAP (2012-2019) and Arase (2017-) and propose the use of the datasets as reference in a series of space weather and space radiation environment developments.

Sandberg, I.; Jiggens, P.; Evans, H.; Papadimitriou, C.; Aminalragia–Giamini, S.; Katsavrias, Ch.; Boyd, A.; O’Brien, T.; Higashio, N.; Mitani, T.; Shinohara, I.; Miyoshi, Y.; Baker, D.; Daglis, I.;

Published by: Space Weather      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002692

Radiation belt; calibration; data harmonization; space radiation environment; energetic electrons; Van Allen Probes

2020

Equatorial pitch angle distributions of 1 – 50 keV electrons in Earth s inner magnetosphere: an empirical model based on the Van Allen Probes observations

Using seven years of data from the HOPE instrument on the Van Allen Probes, equatorial pitch angle distributions (PADs) of 1 – 50 keV electrons in Earth s inner magnetosphere are investigated statistically. An empirical model of electron equatorial PADs as a function of radial distance, magnetic local time, geomagnetic activity, and electron energy is constructed using the method of Legendre polynomial fitting. Model results show that most equatorial PADs of 1 – 10s of keV electrons in Earth s inner magnetosphere are pancake PADs, and the lack of butterfly PADs is likely due to their relatively flat or positive flux radial gradients at higher altitudes. During geomagnetically quiet times, more anisotropic distributions of 1 – 10s of keV electrons at dayside than nightside are observed, which could be responsible for moderate chorus wave activities at dayside during quiet times as reported by previous studies. During active times, the anisotropy of 1 – 10s of keV electrons significantly enhances, consistent with the enhanced chorus wave activity during active times and suggesting the critical role of 1 – 10s of keV electrons in generating chorus waves in Earth s inner magnetosphere. Different enhanced anisotropy patterns of different energy electrons are also observed during active times: at R>∼4 RE, keV electrons are more anisotropic at dawn to noon, while 10s of keV electrons have larger anisotropy at midnight to dawn. These differences, combined with the statistical distribution of chorus waves shown in previous studies, suggest the differential roles of electrons with different energies in generating chorus waves with different properties. This article is protected by copyright. All rights reserved.

Zhao, H.; Friedel, R.; Chen, Y.; Baker, D.; Li, X.; Malaspina, D.; Larsen, B.; Skoug, R.; Funsten, H.; Reeves, G.; Boyd, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028322

Pitch angle distribution; energetic electrons; Earth s inner magnetosphere; Anisotropy; Chorus wave; statistical analysis; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dynamics of energetic electrons in the slot region during July 2014, an extended period of quiet geomagnetic activity. The bounce-averaged PA diffusion coefficients from three types of waves (hiss, lightning-generated whistlers [LGW], and very low frequency [VLF] transmitters) are calculated based on quasi-linear theory, while the CRAND source follows the results in Xiang et al. (2019, https://doi.org/10.1029/2018GL081730). The simulation results indicate that both LGW and VLF transmitter waves can enhance loss and weaken the top hat PA distribution induced by hiss waves. For 470 keV electrons at L = 2.5, simulation results without CRAND show a much quicker decrease than observations from the Van Allen Probes. After including CRAND, simulated electron flux variations reproduce satellite observations, suggesting that CRAND is an important source for hundreds of keV electrons in the slot region during quiet times. The balance between the CRAND source and loss due to wave-particle interactions provides a lower limit to relativistic electron fluxes in the slot region, which can act as an important reference point for instrument calibration when a true background level is warranted.

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

2019

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

2018

Generation process of large-amplitude upper band chorus emissions observed by Van Allen Probes

We analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the EMFISIS (Electric and Magnetic Field Instrument Suite and Integrated Science) instrument package onboard the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the HOPE (Helium Oxygen Proton Electron) instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between the threshold and optimum amplitudes. In the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.

Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA024782

Chorus; energetic electrons; nonlinear wave-particle interaction; observation; Radiation belt; Van Allen Probes

2016

Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt

Zebra stripes\textquotedblright are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that the zebra stripes can be transformed into evenly spaced patterns in the electron drift frequency coordinate: the detrended logarithmic fluxes in each L shell region can be well described by sinusoidal functions of drift frequency. The \textquotedblleftwave number\textquotedblright of this sinusoidal function, which corresponds to the reciprocal of the gap between two adjacent peaks in the drift frequency coordinate, increases in proportion to real time. Further, these structural and evolutionary characteristics of zebra stripes can be reproduced by an analytic model of the evolution of the particle distribution under a single monochromatic or static azimuthal electric field. It is shown that the essential ingredient for the formation of multiple zebra stripes is the periodic drift of particles. The amplitude of the zebra stripes shows a good positive correlation with Kp index, which indicates that the generation mechanism of zebra stripes should be related to geomagnetic activities

Liu, Y.; Zong, Q.-G.; Zhou, X.-Z.; Foster, J.; Rankin, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022077

electric field; energetic electrons; particle dynamic; Radiation belt; Van Allen Probes; zebra stripes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

2015

Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations

We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2\textendash6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0\textendash4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes, the time interval between quasiperiodic elements decreased from 6 min to 3 min. We find one-to-one correspondence between the quasiperiodic elements detected by Van Allen Probe-A and on the ground, which indicates the temporal nature of the observed variation in the time interval between quasiperiodic elements. Multiсomponent measurements of the wave electric and magnetic fields by the Van Allen Probe-A show that the quasiperiodic emissions were almost circularly right-hand polarized whistler mode waves and had predominantly small (below 30\textdegree) wave vector angles with respect to the magnetic field. In the probable source region of these signals (L about 4), we observed synchronous variations of electron distribution function at energies of 10\textendash20 keV and the quasiperiodic elements. In the pause between the quasiperiodic elements pitch angle distribution of these electrons had a maximum near 90\textdegree, while they become more isotropic during the development of quasiperiodic elements. The parallel energies of the electrons for which the data suggest direct evidence of the wave-particle interactions is in a reasonable agreement with the estimated cyclotron resonance energy for the observed waves.

Titova, E.; Kozelov, B.; Demekhov, A.; Manninen, J.; Santolik, O.; Kletzing, C.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/grl.v42.1510.1002/2015GL064911

energetic electrons; quasiperiodic emissions; Van Allen Probes; VLF waves

Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 - 6.3, with a lower frequency band 0.1 - 0.5fce and a peak spectral density \~[10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (\~ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation around between 0.3fce and 0.4fce, at latitude <7o. Moreover, chorus waves launched with initial normal angles either θ < 90o or >90o propagate along the field either northward or southward, and then bounce back either away from Earth for a lower frequency or towards Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Moreover, we examine a dayside event during a small storm C on 8 May 2014 (Dst≈-45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.

He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021376

chorus wave excitation; energetic electrons; Geomagnetic storm; Van Allen Probes; Van Allen probes results; Wave-particle interaction

Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes

Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1\textendash0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10-3 nT2, using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56\% of the time over the full chorus wave band, 60\% of the time for lower band chorus, and 59\% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.

Hartley, D.; Chen, Y.; Kletzing, C.; Denton, M.; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020808

chorus waves; EMFISIS; energetic electrons; Radiation belts; Van Allen Probes; wave-particle interactions

2014

Characteristics of pitch angle distributions of 100 s keV electrons in the slot region and inner radiation belt

The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100 s keV electron PADs below L = 4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90o), cap (exceedingly peaking narrowly around 90o) and 90o-minimum (lower flux at 90o) PADs. By examining the characteristics of the PADs of ~460 keV electrons for over a year, we find that the 90o-minimum PADs are generally present in the inner belt (L < 2), while normal PADs dominate at .L ~3.5 - 4. In the region between, 90o-minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90o-minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, butthis mechanism can hardly explain the formation of 90o-minimum PADs at the center of inner belt.

Zhao, H.; Li, X.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Jaynes, A.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020386

energetic electrons; Inner radiation belt; Pitch angle distribution; plasmasphere; Slot region; Van Allen Probes; Wave-particle interaction

Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts

The intensities of energetic electrons (~25 \textendash 800 keV) outside and inside Earth\textquoterights radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the outer radiation belt boundary are found to be one to three orders of magnitude higher than values measured just inside the radiation belt. (2) There is indication that substorm activity leads to PSD increases inside L = 5.5 in less than 1 hr. (3) Evidence for progressive inward transport of enhanced PSDs is found. (4) Reductions and enhancements in the PSDs over L-shells from 3.5 to 6 are found to occur rapidly in ~2 \textendash 3 hrs. These results suggest that (1) continual replenishments are required to maintain high levels of PSD for electrons at these energies, and (2) inward radial transport of these electrons occurs in a fast time scale of a few hrs.

T. Y. Lui, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020049

Dipolarization; energetic electrons; Radiation belts; substorm; Van Allen Probes

REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth\textquoterights outer radiation belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Yue; Friedel, Reiner; Henderson, Michael; Claudepierre, Seth; Morley, Steven; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019431

Earth\textquoterights outer radiation belt; energetic electrons; Pitch-angle distributions



  1